A Tool for RTF Processing
Release 1.10

Paul DuBois
duboi s@primate.wisc.edu

Wisconsin Regional Primate Research Center
Revision date: 5 April 1994

Introduction

This document describes a general purpose tool for processing RTF files—an RTF reader which may be
configured in a well-defined manner to allow it to be used with a variety of writers generating different out-
put formats. This provides a method for generating RTF-to-XXX translators.

I assume that you have some familiarity with RTF syntax and semantics, and that you’re willing to study
the source code of the RTF distribution described here. If you don’t have the RTF specification, you can
get it from the FTP site listed under ““Distribution Availability’’ at the end of this document. References to
“the specification” refer to the RTF specification document.

If you use this tool and find that you have an RTF file that won’t pass through the sample translator rtf2null,
or for which rtf2null announces unknown symbols, please contact me so the tool can be improved. It is
best if you can supply the RTF file for which this behavior is observed.

Theory of Operation

Trandator Architecture

This is a brief description of how translators are designed. For more details, see the document RTF Tools
Trandator Architecture.

There are three components to an RTF translator: reader code, writer code, and driver code. These break
down as follows.

reader
Responsible for peeling tokens out of the input stream, classifying them, and causing the writer to
process them.

writer
Responsible for translating tokens from the input stream into the required output format.

driver
Responsible for making sure the reader and writer are initialized, and for calling the reader, to cause
translation to occur.

This architecture allows the reader to remain constant, so that different translators can be built by supplying
different writer and driver code. Also, for a given translator, the reader and writer remain constant and the
translator can be ported to different types of systems by supplying system-specific driver code.

In practice, to build a new translator, you supply a main() function and the writer code, and link in the RTF
reader. main() includes the driver code and is responsible to see that the following are done:

Revision date: 5 April 1994 Printed: 5 April 1994

RTF Processing Tool -2- Release 1.10

¢ Determine which files are to be translated
¢ Configure the reader, which may involve:
— Reset the input stream if necessary

— Configure other reader behavior, such as whether or not to process the font and color tables inter-
nally

— Install writer callbacks into the reader so it knows what functions to call when various kinds of
tokens occur
e Initialize the writer
¢ Call the reader to process the input stream
¢ Terminate the writer

A minimal translator (for a UNIX system) looks something like this:

include <stdi 0. h>
include "rtf.h"

i nt
main ()
{
RTFSet OpenLi bFi | eProc (Uni xOpenLi bFil e);
RTFInit ();
RTFRead ();
exit (0);
}

This installs a function that’s suitable for opening RTF library files on a UNIX system, initializes the
reader, and calls it to read stdin (the default input stream). The writer portion is null (i.e., there is no
writer), so all that happens is that the reader tokenizes the input and discards it. That isn’t very interesting;
most of the sample translators are examples of more elaborate translators.

Reader Operation

Each time a token is read, several global variables are set:

rtfClass token class

rtfMajor token major number

rtfMinor token minor number

rtfParam token parameter value

rtfTextBuf token text

rtfTextLen length of token (including parameter text)

Tokens are classified using up to three numbers: token class, and major and minor numbers. The major and
minor numbers may be meaningless depending on the kind of token.

The class number can be:

rtfUnknown unrecognized token

rtfGroup “{or“}”

rtfText plain text character

rtfControl token beginning with “\”

rtfEOF fake class number; indicates end of input stream

There are some exceptions. A few tokens beginning with \ actually belong to other classes, a tab character
is treated like \ t ab, and unrecognized tokens are put in class rtflUnknown no matter what they look like.

Revision date: 5 April 1994 Printed: 5 April 1994

Release 1.10 -3- RTF Processing Tool

Within a class, tokens are assigned a major number, and perhaps a minor number. For the rtfText class, the
major number is the value of the input character (0..255), and the minor number is assigned a standard char-
acter code. Text characters have different mappings in different RTF character sets, so to avoid the prob-
lems associated with this, the reader maps the character onto a standard character code using a charset-
dependent translation table. Translators should generally use the standard character code in rtfMinor rather
than the raw character code in rtfMajor. Character mapping issues are described further in the document
RTF Tools Character Mapping.

A ““plain text” character can be a literal character, a character specified in hex notation (\ * XX) or one of the
special escaped characters (\ { ,\ } ,\\). The sequence \ : is treated as a plain text colon. This is arguably
wrong; the rationale is given later under the description of the RTFGetToken() function.

For the rtfControl class, most tokens have both a major and minor number. For instance, all paragraph
attribute control symbols have major number rtfParAttr and a minor number indicating a paragraph format-
ting property, such as rtfLeftindent or rtfSpaceBefore. A few oddball control tokens have no minor number.

Control symbols may have a parameter value, e.g., \ mar gr 720 specifies a right margin (in units of 720
twentieths of a point).

If no parameter value is given, rtfParam s rtfNoParam.

Ideally, there should never be any tokens in the rtfUnknown class, but as the RTF standard continues to
develop, unknown tokens are inevitable.

To write a translator, you’ll need to familiarize yourself with the token classification scheme by reading
ritf.h. A skeleton translator rtfskel is included with the distribution and may be used as a basis for new
translators.

As of release 1.10, the reader allows an 8-bit character set since the current RTF specification (version 1.2)
now allows 8-bit characters. Formerly, if the reader saw an 8-bit character, it converted the character to the
equivalent \ ” XX hex notation sequence and returned that as the token.

Generally, a translator will configure the RTF reader to call particular writer functions when certain kinds
of tokens are encountered in the input stream. These functions are known as class callbacks. Writer call-
backs can be registered with the reader using RTFSetClassCallback() for each token class.

The reader reads each token, classifies it, and sends it to a token routing function RTFRouteToken(), which
tries to find a writer callback function to process the token. Tokens in a given class are ignored if no call-
back is registered for the class.

Class callbacks make it quite easy to receive notification when certain types of tokens occur in the input.
For instance, a crude RTF text extractor could be written by installing a callback function for the rtfText
class.! Whenever the function is invoked, rtfMajor will contain a value in the range 0..255 representing the
character value.

include <stdi 0. h>
include "rtf.h"

void
Text Cal | back ()
{
putchar (rtfMajor);
}
i nt
main ()

I Reasons this is a crude translator are that: (i) some text characters occur in contexts where the characters are not in-
tended to be output, e.g., font tables, stylesheets; (ii) some control symbols like \ t ab represent output text characters; (iii)
it writes output based on the raw input character value in rtfMajor rather than mapping the standard character code in
rtfMinor. The sample translator rtf2text addresses these problems in a (slightly) more sophisticated manner.

Revision date: 5 April 1994 Printed: 5 April 1994

RTF Processing Tool -4 - Release 1.10

{
RTFSet OpenLi bFi | eProc (Uni xOpenLi bFil e);
RTFInit ();
RTFSet O assCal | back (rtfText, TextCall back);
RTFRead ();
exit (0);

}

Callbacks for the rtfControl and rtfGroup classes typically operate by selecting on the token major number
to determine the action to take. A callback for the rtfGroup class usually will do something like this:

void

BraceCal | back ()

{
switch (rtfMajor)

{

case rtfBegi nG oup:
...push state...
break;
case rtfEndGroup:
...pop state...
break;

Destination Readers

Grouping in RTF documents occurs within braces “{”” and ““}”. One kind of group is the destination. The
token immediately following the opening brace is a destination control symbol. These indicate such things
as headers, footers, footnotes, etc.

Three destinations which specify information for internal use (i.e., information which affects output but
isn’t itself written) are the font table, color table and stylesheet. Since these three destinations occur so
commonly and have a special syntax, the RTF reader by default gobbles them up itself when it recognizes
them. The functions which do this are called destination readers and are probably the nearest thing in the
reader to what might be called parsers. They are installed by default so that translators can be written with-
out the burden of understanding the syntax or digesting the contents of these destinations. Each of them
constructs a list of the entries specified in the destination and the reader includes functions providing access
to these lists.

Translators can turn off or override these defaults with RTFSetDestinationCallback() if necessary. To over-
ride one, pass the address of a different destination reader function. To turn one off, pass NULL.

Destination callbacks may be called for any destination, not just rtfFontThl, rtfColor Thl and rtfStyleSheet.
Destinations for which no callback is registered are not treated specially.

Other destinations for which there is a default reader are the information (\ i nf 0), picture (\ pi ct), and
object (\ obj ect) destinations; all they do is skip to the end of the group.

Using the Built-in Destination Readers

The font table, color table and stylesheet information is maintained internally, and the reader either acts on
that information itself, or allows itself to be queried by the writer about it, as described below. These
descriptions do not apply if the translator shuts off or overrides the default destination readers, of course.

Stylesheet—The reader acts on this itself. When the stylesheet destination is encountered, the style con-
tents are remembered. Thereafter, whenever the writer receives notification that a style number control
symbol (\ snnn) has occurred, it can call RTFExpandStyle(rtfParam) to cause the style to be expanded.
The reader consults contents of the stylesheet and each token in the style definition is routed in turn back to
the writer. This effects a sort of macro expansion.

Revision date: 5 April 1994 Printed: 5 April 1994

Release 1.10 -5- RTF Processing Tool

If the writer doesn’t care about style expansion, it simply refrains from calling RTFExpandStyl&().
If the writer wants information about a style, it can call RTFGetStyle().

Font table—For each entry in the font table, the font number, type and name are maintained by the reader.
The writer finds out that a font number has been specified in the input when its control class callback is
invoked and rtfMajor = rtfCharAttr and rtfMinor = rtfFontNum. To obtain a pointer to the appropriate RTF-
Font structure, the reader function RTFGetFont(rtfParam) may be called.

Color table—For each entry in the color table, the color number is maintained along with the red, green
and blue values. The writer finds out that a color number has been specified in the input when its control
class callback is invoked and rtfMajor = rtfCharAttr and rtfMinor = rtfColorNum. To obtain a pointer to
the appropriate RTFColor structure, the reader function RTFGetColor (rtfParam) may be called.

One subtle point about the built-in destination readers: destinations cannot be recognized until after the
occurrence of the “{” symbol that begins the destination. This means the writer, if it maintains a state
stack, will already have pushed a state. In order to allow the writer to properly pop that state in response to
the “}”, these destination readers feed the ““}”” back into the token router after they pull it from the input
stream. What the writer actually sees is a “{”’ followed immediately by a ““}”.

Applications that maintain a state stack may find it necessary to do something similar if they supply their
own destination readers.

Programming I nterface

Source files using the RTF reader should #include rtf.h. The library files common to all translators are used
to build a library librtf.a in the distribution’s lib directory. This library should be part of the final applica-
tion link.

The best way to learn how these source files work is to study the sample translators, which vary in com-
plexity from very simple (e.g., rtf2text, rtfwc), to wretchedly messy (e.g., rtf2troff). You should be aware
that one implication of the way the translators are built (callbacks and switch statements) is that it’s quite
easy to build them incrementally. You can start with a very bare-bones model, and start plugging in call-
backs as you progress. Within the callbacks, your switch statements can progressively handle more cases.

An alternative approach is to start with a copy of rtfskel, which includes a full set of class callbacks and
complete switch statements for all tokens. Each case is empty; you simply add code for those cases you
want to handle. You can also rip out the code for the cases you don’t care about.

Types
Most types are pretty standard. The one of note is RTFFuUncPtr, a generic function pointer which is defined
like so:

typedef void (*RTFFuncPtr) ();

That is, it’s a pointer to a function that takes no arguments and returns no value.
Global variables

The global RTF reader variables are:

Revision date: 5 April 1994 Printed: 5 April 1994

RTF Processing Tool -6- Release 1.10

int rtfClass; token class

int rtfMajor; token major number

int rtfMinor; token minor number

int rtfParam; parameter value for control symbols
char *rtf TextBuf; token text

int rtfTextLen; length of token text

These variables always apply to the token with which the writer should be concerned. This may be either
the last token read or the current token within a style which is being reprocessed.

Warning: rtfTextBuf is NULL until RTFInit() has been called.

Two other global variables which may be of interest provide the current input line number and position
within the line:

long rtfLineNum; current input line
int rtfLinePos; position within current line

These variables can be used to provide feedback to the user when a problem is found in an input file as to
the location of the problem. They indicate the position immediately after the last token read.

Functions

voi d

RTFInit ()
Initialize the RTF reader. This should be called once for each input file to be pro-
cessed. It performs some initialization such as computing hash values for the token
lookup table and installation of some built-in destination and token class readers.

RTFInit() may be called multiple times. Each invocation resets the reader’s state
completely, except that the input stream is not disturbed.

voi d

RTFRead ()
RTFRead() calls RTFGetToken() to tokenize the input stream and RTFRouteToken()

to process each token, until input is exhausted. When RTFRead() returns, input has
been completely read and the writer can perform any cleanup or termination needed.

If you want to read multiple files per invocation of your translator, you should do the
following for each file: call RTFInit(), install callbacks, etc., then call RTFRead().

voi d

RTFRout eToken ()
This routine decides what to do with the current token and routes it to the correct
place for processing. Usually this is directly to the writer via a class callback. The

token is not passed to the writer (i.e., the class callback is bypassed) when it is a desti-
nation token for which a reader callback is installed.

By default, built-in readers are installed for font table, color table, stylesheet and
information and picture group destinations. The built-in readers can be disabled if the
writer wants to see all tokens directly.

Revision date: 5 April 1994 Printed: 5 April 1994

Release 1.10 -7- RTF Processing Tool

i nt

RTFGet Token ()
Reads one token from the input stream, classifies it, sets the global variables, and
returns the class number. If the class is rfEOF the end of the input stream has been
reached. Newlines (\ n), carriage returns (\ r), and nulls are silently discarded by
RTFGetToken(), as they have no meaning. All are passed to the token hook if one is
installed, however.

The sequence \ : is treated as a plain text character, with rtfClass set to rtfText and
rtftMajor set to the colon ASCII code. Strictly speaking,\ : is the control word for an
index subentry, but some versions of Microsoft Word write out plain text colons with
a preceding backslash, while others don’t. This unfortunate ambiguity results in an
ugly dilemma. It seems the lesser burden to require translators to recognize that plain
text colons should “really” be treated as index subentry indicators while inside of an
index entry destination, than to recognize that an index subentry control word should
“really” be treated as a plain text colon everywhere else.

Writer code usually does not call RTFGetToken() directly except within specialized
destination readers. Driver code usually does not call RTFGetToken() if it calls RTF-
Read(). However, the following loop is an alternative to RTFRead():

whil e (RTFGet Token () != rtfECF)

{

}

If a driver wants to regain control after reading each token, this loop may be prefer-
able to RTFRead().

i nt

RTFUnget Token ()

RTFRout eToken ();

Pushes the last token back on the input stream so that RTFGetToken() returns it again.
You can’t put back the same token twice unless you read it again in the interim.

i nt

RTFPeekToken ()

Reads a token from the input stream and sets the global token variables, but does not
remove the token from the input stream.

voi d

RTFSet Token (class, major, minor, param text)
i nt cl ass, nmjor, mnor, param

char *text;

It is sometimes useful to construct a fake token and run it through the token router to
cause the effects of the token to be applied. RTFSetToken() allows you to do this, by
setting the reader’s global variables to the values supplied. If param is rtfNoParam,
the token text rtfTextBuf is constructed from text and param, otherwise rtfTextBuf is
just copied from text.

Revision date: 5 April 1994 Printed: 5 April 1994

RTF Processing Tool -8- Release 1.10

voi d
RTFSet ReadHook (f)
RTFFuncPtrf;

Install a function to be called by RTFGetToken() after each token is read from the
input stream. The function takes no arguments and returns no value. Within the func-
tion, information about the current token can be obtained from the global variables.
This function is for token examination purposes only, and should not modify those
variables.

RTFFuncPtr
RTFGet ReadHook ()

Returns a pointer to the current read hook, or NULL if there isn’t one.

voi d

RTFSki pG oup ()
This function can be called to skip to the end of the current group (including any sub-
groups). It’s useful for explicitly ignoring \ *\ dest groups, where dest is an unrecog-
nized destination, or for causing groups that you don’t want to deal with to effectively
“disappear” from the input stream.

Calling this function in the middle of expanding a style may cause problems. How-
ever, it is typically called when you have just seen a destination symbol, which won’t
happen during a style expansion—I think.

Be careful with this function if your writer maintains a state stack, because you will
already have pushed a state when the opening group brace was seen. After RTFSKip-
Group() returns, the group closing brace has been read, and you’ll need to pop a state.
All global token variables will still be set to the closing brace, so you may only need
to call RTFRouteToken() to cause the state to be unstacked.

voi d
RTFExpandStyl e (nun)
i nt numn

Performs style expansion of the given style number, or does nothing if there is no
such style. The writer should call this when it notices that the current token is a style
number indicator.

voi d
RTFSet St ream (stream
FI LE *stream

Redirects the RTF reader to the given stream. This should be called before any read-
ing is done. The default input stream is stdin. An alternative to RTFSetSream() is to
simply freopen() the input file on stdin (that’s what all the sample translators do).

The input stream is not modified by RTFInit().

voi d
RTFSet O assCal | back (cl ass, call back)
i nt cl ass;

RTFFuncPtrcal | back;

Installs a writer callback function for the given token class. The first argument is a

Revision date: 5 April 1994 Printed: 5 April 1994

Release 1.10 -9- RTF Processing Tool

class number, the second is the function to call when tokens from that class are
encountered in the input stream. This will cause RTFRouteToken() to invoke the call-
back when it encounters a token in the class. If callback is NULL (which is the
default for all classes), tokens in the class are ignored, i.e., discarded.

The callback should take no arguments and return no value. Within the callback,
information about the current token can be obtained from the global variables.

Installing a callback for the rtfEOF “class” is silly and has no effect.

RTFFuncPt r
RTFGet O assCal | back (cl ass)
i nt cl ass;

Returns a pointer to the callback function for the given token class, or NULL if there
isn’t one.

void

RTFSet Desti nati onCal | back (dest, call back)

i nt dest ;
RTFFuncPtrcal | back;

Installs a callback function for the given destination (dest is a token minor number).
When RTFRouteToken() sees a token with class rtfControl and major number rtfDes-
tination, it checks whether there is a callback for the destination indicated by the
minor number. If so, it invokes it. If callback is NULL, the given destination is not
treated specially (the control class callback is invoked as usual). By default, destina-
tion callbacks are installed for the font table, color table, stylesheet, and information
and picture group.

The callback should take no arguments and return no value. When the functon is
invoked, the current token will be the destination token following the destination’s
initial opening brace { . (For optional destinations, the destination token follows the
\ * symbol.)

RTFFuncPt r

RTFGet Desti nati onCal | back (dest)
i nt dest;

Returns a pointer to the callback function for the given token class, or NULL if there
isn’t one.

RTFStyl e *
RTFGet Styl e (num
i nt nuni

Returns a pointer to the RTFStyle structure for the given style number. The ‘“Nor-
mal” style number is 0. Pass —1 to get a pointer to the first style in the list. Styles are
not stored in any particular order.

Be sure to check the result; it might be NULL.

This function is meaningless if the default stylesheet destination reader is overridden.

Revision date: 5 April 1994 Printed: 5 April 1994

RTF Processing Tool -10 - Release 1.10

RTFFont *
RTFGet Font (num
i nt nuni

Returns a pointer to the RTFFont structure for the given font number. Pass —1 to get a
pointer to the first font in the list. Fonts are not stored in any particular order.

Be sure to check the result; it might be NULL. In particular, you might think that
passing the number specified with the \ def f (default font) control symbol would
always yield a valid font structure, but that’s not true. The default font might not be
listed in the font table.

This function is meaningless if the default font table destination reader is overridden.

RTFCol or *
RTFGet Col or (nun)
i nt num

Returns a pointer to the RTFColor structure for the given color number. Pass —1 to
get a pointer to the first color in the list. Colors are not stored in any particular order.
If the color values in the entry are —1, the default color should be used. The default
color is translator-dependent.

Be sure to check the result; it might be NULL. I think this means you should use the
default color.

This function is meaningless if the default color table destination reader is overridden.

i nt

RTFCheckCM (cl ass, nmmj or)

i nt cl ass, nmjor;
Returns non-zero if rtfClass and rtfMajor are equal to class and major, respectively,
zero otherwise.

i nt

RTFCheckCWM (cl ass, major, minor)

i nt cl ass, major, mnor;
Returns non-zero if rtfClass, rtftMajor and rtfMinor are equal to class, major and
minor, respectively, zero otherwise.

i nt

RTFCheckMM (maj or, minor)

i nt maj or, m nor;
Returns non-zero if rtftMajor and rtfMinor are equal to major and minor, respectively,
zero otherwise.

char *

RTFAI | oc (si ze)

i nt si ze;

Returns a pointer to a block of memory size bytes long, or NULL if insufficient mem-
ory was available.

Revision date: 5 April 1994 Printed: 5 April 1994

Release 1.10 -11- RTF Processing Tool

char *
RTFSt r Save (s)
char *s;

Allocates a block of memory big enough for a copy of the given string (including ter-
minating null byte), copies the string into it, and returns a pointer to the copy.
Returns NULL if insufficient memory was available.

voi d
RTFFree (p)
char *p;

Frees the block of memory pointed to by p, which should have been allocated by
RTFAIlloc() or RTFSrSave(). It is safe to pass NULL to this routine.

voi d
RTFChar ToHex (c)
char c;

Returns 0..15 for the characters ‘0°..°9¢,‘a*..“f*.

voi d
RTFHexToChar (i)
i nt i

Returns the characters ‘0°..°9¢,‘a‘..’f* for 0..15.

i nt

RTFReadChar Set Map (file, csld)

char *file,

i nt csld;
Reads a charset map file into the charset map indicated by csld, which should be
either rtfCSGeneral or rtfCSSymbol. Returns non-zero for success, zero otherwise.

voi d

RTFSet Char Set Map (file, csld)

char *file;

i nt csld;
Specify the name of the file to be read for the charset map indicated by csld (which
should be either rtfCSGeneral or rtfCSSymbol) when auto-charset-file reading is
done. This can be used to override the default charset map names. RTF-
SetChar SetMap() should be called after RTFInit() but before you begin reading any
input.

voi d

RTFSet Char Set (csl d)

i nt csl d;
Switches to the charset map given by csld, which should be either rtfCSGeneral or
rtfCSSymbol.

i nt

RTFGet Char Set ()
Returns the id of the current charset map, either rtfCSGeneral or rtfCSSymbol .

Revision date: 5 April 1994 Printed: 5 April 1994

RTF Processing Tool -12- Release 1.10

i nt
RTFMapChar (c)
i nt C;

Maps in input character onto a standard character code.

i nt
RTFSt dChar Code (nane)
char *narme;

Given a standard character name, returns the standard code corresponding to the
name, or —1 if the name is unknown.

char *
RTFSt dChar Narre (code)
i nt code;

Given a standard character code, returns a string pointing to the standard character
name, or NULL if the code is unknown.

i nt

RTFReadQut put Map (file, outMap, reinit)
char *file;

char *out Map[];

i nt reinit;

Reads an output map from the named file into outMap. If reinit is non-zero, the map
is cleared first. See the document RTF Tools Character Mapping for further details.

Generally, the output map needs to be read only once.

voi d

RTFSet | nput Nane (name)
char *nane;

voi d

RTFSet Cut put Nanme (nane)
char *nane;

These functions tell the RTF library the input or output file names. They’re called by
driver code so that writer code can determine the names by calling RTFGetlnput-
Name() and RTFGetOutputName(). Since RTFInit() sets the names to NULL, the
driver should set the names after calling RTFInit() but before calling the writer to tell
it to set up for a new file.

char *
RTFGet | nput Nanme ()

char *
RTFGet Qut put Nane ()

These functions return pointers to the current input and output file names, assuming
the driver has set them up. The caller should make a copy of the strings returned if it
wants to modify them.

voi d

RTFMsg (args ...)

Revision date: 5 April 1994 Printed: 5 April 1994

Release 1.10 -13 - RTF Processing Tool

This function generates a diagnostic message. It takes printf()-like arguments.

See the description of RTFSetMsgProc().

voi d
RTFPanic (args ...)

This function generates an error message and terminates the process. It takes
printf()-like arguments.

See the description of RTFSetPanicProc().

FI LE *

RTFQpenLi bFi | e (nane, node)
char *nane;

char * mode;

This function opens a library file and returns a FI LE pointer to it, or NULL if the file
could not be opened.

See the description of RTFSetOpenLibFileProc().

voi d
RTFSet MsgProc (proc)
voi d (*proc) ();

This function installs a function for use by RTFMsg(); see RTF Tools Trandglator
Architecture for details.

voi d
RTFSet Pani cProc (proc)
voi d (*proc) ();

This function installs a function for use by RTFPanic(); see RTF Tools Translator
Architecture for details.

voi d
RTFSet QpenLi bFi | eProc (proc)
FI LE *(*proc) ();

This function installs a function that the library will use to open library files. The
driver must call this when it starts up or RTFOpenLibFile() will always return NULL.
The function should take a library file basename and open mode, open the file, and
return the FI LE pointer, or NULL if the file could not be found and opened.

Distribution Availability

This software may be redistributed without restriction and used for any purpose whatsoever.

The RTF Tools distribution is available for anonymous ftp access on ftp.primatewisc.edu. Look in the
/pub/RTF directory. Updates appear there as they become available.

A version of the RTF specification is available in this directory, as a binhex’ed Word for Macintosh docu-
ment and in RTF and PostScript formats.

The software and documentation may also be accessed using gopher by connecting to
gopher.primate.wisc.edu or using World Wide Web by connecting to www.primate.wisc.edu using the URL
http: /mww.primatewisc.edu/. In both cases, look under “Primate Center Software Archives”.

Revision date: 5 April 1994 Printed: 5 April 1994

RTF Processing Tool -14 - Release 1.10

If you do not have Internet access, send requests to Software@primate.wisc.edu. Bug reports and questions
should be sent to this address as well.

If you use this software as the basis for a translater not included in the current collection, please send me a
description that indicates how it may be obtained and I’ll add the description to the archive site.

Revision date: 5 April 1994 Printed: 5 April 1994

